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Irreversible opinion spreading on scale-free networks
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We study the dynamical and critical behavior of a model for irreversible opinion spreading on Barabdsi-
Albert (BA) scale-free networks by performing extensive Monte Carlo simulations. The opinion spreading
within an inhomogeneous society is investigated by means of the magnetic Eden model, a nonequilibrium
kinetic model for the growth of binary mixtures in contact with a thermal bath. The deposition dynamics,
which is studied as a function of the degree of the occupied sites, shows evidence for the leading role played
by hubs in the growth process. Systems of finite size grow either ordered or disordered, depending on the
temperature. By means of standard finite-size scaling procedures, the effective order-disorder phase transitions
are found to persist in the thermodynamic limit. This critical behavior, however, is absent in related equilibrium
spin systems such as the Ising model on BA scale-free networks, which in the thermodynamic limit only
displays a ferromagnetic phase. The dependence of these results on the degree exponent is also discussed for

the case of uncorrelated scale-free networks.
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I. INTRODUCTION

Over the last few years, the study of statistical and com-
plex systems has proved extremely valuable in providing in-
sight into many emerging interdisciplinary fields of science
[1-3]. In particular, many efforts have focused recently on
the mathematical modeling of a rich variety of social phe-
nomena, such as social influence and self-organization, co-
operation, opinion formation and spreading, evolution of so-
cial structures, etc. (see, e.g., [4—12]). In this context, much
attention has been devoted to the investigation of social mod-
els defined on complex networks, since their topology re-
flects some key aspects of social structures, such as the
small-world effect and the high connectivity of local neigh-
borhoods [13-16].

The interest in complex networks hugely intensified in
recent years due to the striking similarity observed in the
structure of many real networks as different as the Internet
and the World Wide Web, ecological and food webs, power
grids and electronic circuits, genome and metabolic reac-
tions, collaboration among scientists and among Hollywood
actors, and many others.

Empirical observations revealed that the degree distribu-
tions of these networks, P(k), which measure the probability
that any randomly chosen node has k links, are fat tailed and
typically close to a power law, i.e., P(k)~k~". Unlike the
Poisson degree distribution of classical random graphs,
power-law distributions lack any characteristic scales, hence
leading to their designation as scale-free networks [14].

Following these intriguing observations, Barabasi and Al-
bert uncovered the fundamental principles that could be re-
sponsible for the ubiquitous development of scale-free struc-
tures in natural and artificial systems [17]. The Barabdsi-
Albert (BA) model is based on the assumptions that (i) real
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networks evolve gradually by the addition of new nodes, and
that (ii) the mechanism of linear preferential attachment gov-
erns the probability distribution of connections between the
newly added nodes and those already present in the system.
Indeed, this simple dynamical model for the formation of
networks was shown to generate structures with scale-free
degree distributions with exponent yg, =3, while detailed ex-
planations for the processes of growth and preferential at-
tachment were provided later for several specific cases
[14,17,18].

Besides the extensive and detailed characterization of
structural and topological properties of many different kinds
of complex networks, further investigations have focused on
the dynamical and critical behavior of models defined on
them. As part of these efforts, different spin models have
been studied on scale-free networks [6,19-24], as well as on
other classes of complex networks [12,25-30]. On the one
hand, these investigations have been motivated by the inher-
ent theoretical interest of exploring further properties of
many standard models of statistical mechanics. On the other
hand, spin models defined on complex network structures
can contribute to the understanding of a rich diversity of
processes in contexts as different as materials science, soci-
ology, and biology. For instance, as regards the application of
Ising-type spin models to the study of social phenomena, the
spin states may denote different opinions or preferences,
where the coupling constant describes the convincing power
between interacting individuals, which is in competition with
the “free will” given by the thermal noise [6]. Moreover, a
magnetic field can be used to add a bias that could be inter-
preted as “prejudice” or “stubbornness” [28].

Cooperative phenomena arising in models defined on
complex networks are profoundly affected by the interplay
between the model dynamics and the underlying network
topology. For instance, simulations of the Ising model de-
fined on BA scale-free networks reveal that the effective
critical temperature scales logarithmically with the system
size, thus showing that only the ordered ferromagnetic phase
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is present in the thermodynamic limit [6]. Similar results are
obtained for the Ising model defined on uncorrelated scale-
free networks with exponent y=3 [23]. However, for 2<vy
<3 the effective critical temperatures are found to scale as a
power of the system size, while for y>3 the finite-size
(pseudo) critical temperatures converge to finite values in the
thermodynamic limit, hence indicating the occurrence of true
ferromagnetic-paramagnetic phase transitions [23].

In a related context, nonequilibrium order-disorder phase
transitions were recently observed in the so-called magnetic
Eden model (MEM) [31,32] growing on small-world net-
works [12]. The MEM is a kinetic growth model in which
the deposited particles have an intrinsic spin. In regular lat-
tices, the MEM’s growth process leads to Eden-like self-
affine growing interfaces and fractal cluster structures in the
bulk [31]. Furthermore, the MEM displays an interesting va-
riety of nonequilibrium phenomena, such as thermal order-
disorder continuous phase transitions and spontaneous mag-
netization reversals, as well as morphological, wetting, and
corner wetting transitions [32].

The aim of this work is to study the irreversible opinion
spreading within an inhomogeneous society by characteriz-
ing the dynamical and critical behavior of the MEM growing
on scale-free networks. According to the growth rules of the
MEM, which are given in the next section, the opinion or
decision of an individual would be affected by those of their
acquaintances, but opinion changes (analogous to spin flips
in an Ising model) would not occur. Moreover, the structure
of scale-free networks provides an interesting setting in
which the social roles differ significantly from one member
to another one. Indeed, hubs in the scale-free network repre-
sent highly influential individuals, whose opinions can po-
tentially affect the decisions of many other individuals in the
society. In order to represent the underlying scale-free topol-
ogy, we will mainly focus on the Barabdsi-Albert model.
However, the dependence of the results on the degree expo-
nent will also be discussed by considering the MEM growing
on uncorrelated scale-free networks.

Although this work is mainly motivated by social
phenomena, a magnetic language will be adopted through-
out. As commented above, physical concepts such as tem-
perature and magnetization, spin growth and clustering,
ferromagnetic-paramagnetic phase transitions, etc., can be
meaningfully reinterpreted in sociological and/or sociophysi-
cal contexts.

This paper is organized as follows: in Sec. II, details on
the model definition and the simulation method are given;
Sec. III is devoted to the presentation and discussion of the
results, and Sec. IV contains the conclusions.

II. THE MODEL AND THE SIMULATION METHOD

According to the model put forward by Barabdsi and Al-
bert [17], the scale-free nature of many real networks arises
from considering two basic dynamical mechanisms: growth
and preferential attachment. Starting with a small number of
nodes, m, a new node with m edges is added at every time
step and is connected to m different nodes already present in
the system. The probability II for connecting the new node
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to an arbitrary node of degree k is given by [1=k/K, where
K=Z=k is the sum of degrees taken over all available nodes in
the system. Numerical simulations and different analytic
studies, such as the continuum theory, the master equation,
and the rate equation approaches, show that the BA model
asymptotically leads to scale-free networks with exponent
vea=3 [14,17,18].

After generating one network realization, a randomly cho-
sen up or down spin is deposited on a random site. Starting
from this seed, the MEM growth takes place by adding, one
by one, further spins to the immediate neighborhood (the
perimeter) of the growing cluster, where the interaction en-
ergies between neighboring spins shape the growth probabil-
ity distributions. By analogy to the Ising model, the energy E
of a configuration of spins is given by

J
E=->-255;, (1)
2%

where S;==+1 indicates the orientation of the spin for each
occupied site (labeled by the subindex i), J>0 is the ferro-
magnetic coupling constant between nearest-neighbor (NN)
spins, and (ij) indicates that the summation is taken over all
pairs of occupied NN sites (i.e., those which are connected
within the particular network realization). As with other spin
systems defined on complex networks, the magnetic interac-
tion between any pair of spins is only present when a net-
work edge connects their nodes.

Setting the Boltzmann constant equal to unity (kz=1),
the probability for a new spin to be added to the perimeter of
the existing cluster is defined as proportional to the Boltz-
mann factor exp(~AE/T), where T is the absolute tempera-
ture and AE is the total energy change involved. In this work,
energy and temperature are measured in units of J through-
out. At each step, all perimeter sites have to be considered
and the probabilities of adding a new (either up or down)
spin to each site must be evaluated. Using the Monte Carlo
simulation method, all growth probabilities are first com-
puted and normalized, and then the growing site and the
orientation of the new spin are both determined by means of
a pseudorandom number. Although the configuration energy
of a MEM cluster, given by Eq. (1), resembles the Ising
Hamiltonian, it should be noticed that the MEM is a non-
equilibrium model in which new spins are continuously
added, while older spins remain frozen and are not allowed
to flip. The growth of MEM clusters proceeds by iterating
this deposition process until the network becomes com-
pletely filled.

Notice that, since all normalized growth probabilities
have to be recalculated at each deposition step, the resulting
update algorithm is quite slow. Ensemble averages were cal-
culated by considering typically 10>~ 10? different (randomly
generated) networks and 50-100 different (randomly chosen)
seeds for each network configuration. The ensemble-
averaging procedures lead to very small statistical errors
(typically around or below a few percent), which can be
safely neglected in the context of qualitative discussions. Un-
less otherwise indicated by means of error bars, statistical
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FIG. 1. Average degree of occupied nodes for BA networks of
size N=1000, m=3, and different temperatures, as a function of the
fraction of deposited particles, n,../N. Notice that, assuming a con-
stant deposition rate, the fraction of occupied nodes is a measure of
time. At low temperatures, the early stages of the growth process
are dominated by the hubs, since the MEM’s dynamics favors the
occupation of highly connected nodes within ordered neighbor-
hoods. At higher temperatures, however, the phenomenon of pref-
erential spin deposition is less significant.

errors of data displayed by symbols are comparable to or
smaller than the symbol sizes.

The main part of this paper focuses on BA networks, in
which different values of the BA parameter in the range 1
<m=<7 are considered. Moreover, results for uncorrelated
scale-free networks are also presented for degree exponents
in the range 2= y=<4. Involving a considerable computa-
tional effort, this work presents extensive Monte Carlo simu-
lations for BA and uncorrelated scale-free networks with
sizes up to N=2X 10*.

III. RESULTS AND DISCUSSION

Let us first focus on the dynamical behavior of MEM
clusters growing on finite BA scale-free networks. In order to
investigate the process of spin deposition, we compute the
degree of the newly occupied node, k.., every time a new
particle is added to the system, as well as the number of
already occupied NN sites in the neighborhood of the grow-
ing node, nyy, and the energy change involved in the addi-
tion of the new spin, AE.

Figure 1 shows the average degree of occupied nodes

relative to the network’s mean degree, (k,..)/k, for BA net-
works of size N=103, m=3, and different temperatures, as a
function of the fraction of occupied nodes, n,,../N. Accord-
ing to the MEM’s growth rules, at low temperatures the sys-
tem tends to develop highly ordered spin domains. Hence,
highly connected nodes have larger probabilities to be occu-
pied at early times during the growth process. The leading
role of hubs is clearly observed in the low-temperature plots
of Fig. 1, where (k,..)/k>1 at early stages of the growth
process, i.e. when the number of occupied nodes is of the
order of a few percent of the total system size. At higher
temperatures, however, the increased thermal noise tends to
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FIG. 2. Characterization of the deposition process for BA net-
works of size N=10°, m=3, and different temperatures, as a func-
tion of the node degrees: (a) fraction of previously occupied NN
sites relative to the growing node degree, nyy/k; (b) energy change
(with opposite sign) involved in the deposition process relative to
the growing node degree, —AE/k.

wash out the phenomenon of preferential spin deposition.
The growth at later times mainly proceeds by the occupation
of less-than-average connected nodes, which leads to
roughly temperature-independent values of (k...

Figure 2(a) shows the behavior of the average number of
already occupied NN nodes in the local neighborhood of a
growing node, as a function of its degree, for BA networks of
size N=103, m=3, and different temperatures. The fraction
of occupied NN nodes, nyy/k, decreases monotonically with
the node degree k, which is due to the fact that, as discussed
above, highly connected nodes are more likely to be occu-
pied at earlier stages of the growth process. Moreover, the
distributions become flatter for increasingly larger tempera-
tures, as expected.

In the same vein, Fig. 2(b) shows —AE/k, i.e., the energy
change (with opposite sign) involved in the addition of a new
spin relative to the degree of the growing site, as a function
of k. In agreement with the previous observations, the plots
of —AE/k vs k decrease monotonically and become flatter for
higher temperatures. Notice also that the distributions for the
lowest temperature, 7=0.4, are nearly identical in Figs. 2(a)
and 2(b), since at low temperatures most spins grow prefer-
entially parallel aligned. Instead, the comparison between
plots corresponding to higher temperatures shows that —AE
<nyy, which clearly reflects the onset of thermal disorder.

Furthermore, it is interesting to note that the energy
change involved in the occupation of highly connected nodes
is very low and roughly temperature independent. At low
temperatures, the hubs become rapidly filled and have only a
few neighboring spins. Although the number of already de-
posited neighbors increases for higher temperatures, the net
local magnetization, as measured by |AE|, remains small due
to the increased thermal noise.

Figure 3 shows the mean values of nyy and AE averaged
over the full growth process, i.e., until the network becomes
completely filled, as a function of temperature, for BA net-
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FIG. 3. Mean number of occupied NN sites and mean energy
change involved in the addition of a new particle to the system,
obtained for BA networks of size N=10 and m=3. The
temperature-independent relation {nyy)=k/2 can be explained by
means of a simple bond representation that models the growth pro-
cess (see text for more details).

works of size N=10° and m=3. At low temperatures, most
spins grow parallel aligned and (—AE)=(n,,). However, at
higher temperatures (—AE) decreases towards the (AE)=0
infinite-temperature asymptotic limit, while, instead, ()

remains constant at the value (nyy)=k/2.

The latter result can be explained by means of a simple
bond representation for the MEM’s growth process, as fol-
lows. To each pair of occupied neighboring nodes, one can
assign a directed bond that points from the earlier occupied
site to the later occupied one. Once the network is com-
pletely filled, an arbitrary node of degree k will have a net
bond flux ¢ (i.e., the difference between outwards- and
inwards-directed bonds) given by ¢=k—2nyy. Taking net-

work averages, (¢)=0 and thus {nyy)=k/2, irrespective of
the temperature.

So far, we have addressed some dynamical aspects of the
MEM growing irreversibly on finite-size BA networks. Now,
let us investigate the critical behavior of this nonequilibrium
system. With this aim, we will adopt an appropriate order
parameter and focus on its thermal dependence and the be-
havior of associated distributions of probability. These re-
sults will be later extrapolated to the thermodynamic limit by
means of finite-size scaling relations.

The degree of order in a magnetic system can be naturally
characterized by the total magnetization per site, i.e.,

1
M:NESi. ()

However, according to standard procedures to avoid spurious
effects arising from the finite size of the simulated samples
(see, e.g., [33-35]), it is more appropriate to consider instead
the absolute value of the total magnetization per site, |M|, as
the order parameter.

Figure 4 displays the thermal dependence of {|M |) for the
MEM growing on BA networks of size N=10° and different
values of the BA parameter m. This figure shows, on the one
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FIG. 4. Thermal dependence of the order parameter for BA
networks of size N=10° and different values of m, as indicated.

hand, that the effect of increasing m at a fixed temperature is
that of increasing the net magnetization (and, hence, the or-
der) of the system. Indeed, since the mean degree is given by

k=m[2—(m+1)/N]=2m, the density of connections grows
linearly with m and tends to order the system. On the other
hand, considering the effect of increasing the temperature for
a fixed value of m, we observe that, at low temperatures, the
magnetization is close to unity and the system grows or-
dered, while, at higher temperatures, the disorder sets gradu-
ally on and the magnetization becomes significantly reduced.
Indeed, this behavior reflects the occurrence of thermally
driven, effective order-disorder phase transitions in systems
of finite size.

Further evidence for these pseudophase transitions is ob-
tained from the thermal behavior of the magnetic suscepti-
bility, which can be calculated from the fluctuations of the
order parameter, as well as from the heat capacity, that can
be analogously related to energy fluctuations. The thermal
distributions of these observables, which are not shown here
for the sake of space, exhibit peaks that are correlated to the
effective critical transitions observed in the magnetization
plots.

Figure 5 shows the normalized probability distribution of
the magnetization, P(M), obtained for BA networks of size
N=10%, m=3, and different temperatures. As expected for
thermally disordered systems, at high temperatures the dis-
tribution is peaked at M =0. However, as the temperature is
lowered, one observes the onset of two maxima located at
M=+M, (0<M,,<1), which become sharper and ap-
proach M==1 as T is gradually decreased. The smooth shift
of the distribution maxima across T=T7,, from the high-
temperature M =0 to the low-temperature nonzero spontane-
ous magnetization M=+M,, is the hallmark of true ther-
mally driven continuous phase transitions [35].

These results provide further evidence on the ordering
effects induced on dynamical systems by underlying com-
plex network structures, since the MEM growing in 1D and
2D regular lattices exhibits only pseudophase transitions
with effective critical temperatures T%/(N) that vanish in the
N — o0 limit [31]. Moreover, the interplay between the topol-
ogy of BA scale-free networks and the MEM nonequilibrium
dynamics leads to critical phenomena which are absent in
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FIG. 5. Normalized probability distribution of the magnetiza-
tion, P(M), for BA networks of size N=10%, m=3, and different
temperatures. The sharp peaks arising at M =~ +0.95 for T=1 have
been truncated.

related equilibrium spin systems. For instance, as com-
mented above, the Ising model defined on BA scale-free
structures shows effective critical temperatures that grow
logarithmically with the system size, hence displaying only a
ferromagnetic phase in the thermodynamic limit [6,20].

The existence of true critical phase transitions, character-
ized by m-dependent finite critical temperatures that separate
the low-temperature ferromagnetic phase from the high-
temperature paramagnetic phase, can be further confirmed by
means of a standard finite-size scaling procedure.

According to the finite-size scaling theory, developed for
the treatment of finite-size effects at criticality and under
equilibrium conditions [36,37], the difference between the
true critical temperature, T, and an effective pseudocritical
one, Tﬁff (N), is given by

T - TP (N)| o« N7, 3)

where v is the exponent that characterizes the divergence of
the correlation length at criticality. The effective pseudocriti-
cal temperature, Yﬁff (N), is here defined as the value corre-
sponding to {|M|)=0.5 for a finite system of N nodes.

The symbols in Fig. 6 show the effective pseudocritical
temperatures for the MEM growing on BA networks of dif-
ferent size and different values of the parameter m. The solid
lines are least-squares fits to the data obtained by means of
the finite-size scaling relation, Eq. (3). The effective pseud-
ocritical temperatures decrease monotonically with the net-
work size and lead to finite extrapolations in the thermody-
namic limit, thus confirming the anticipated critical behavior.
Notice also that, for a fixed system size, the pseudocritical
temperatures increase monotonically with m, as expected.

Figure 7 shows the critical temperatures obtained for dif-
ferent values of m. The monotonic increase of T,(m) can be
well approximated by the linear relation T,.(m)=0.522(3)
X m+0.21(1), which is displayed in the figure by a solid line.
Moreover, the dependence with m of the exponent v is
shown in the inset, revealing that v decreases monotonically
and tends to v=2 for m=3.
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FIG. 6. Effective transition temperatures for BA networks of
different size and different values of the parameter m (symbols).
Fits to the data using the finite-size scaling relation, Eq. (3), are also
shown (solid lines).

Let us now consider the irreversible growth of MEM clus-
ters on uncorrelated scale-free networks. Since this type of
networks allows a free choice of the degree exponent 7y, we
will investigate how the dynamical and critical behavior of
the MEM depends on the steepness of the degree distribu-
tion. Moreover, we will compare the critical phenomena ob-
served here to previous investigations in a related context,
namely the Ising model on uncorrelated scale-free networks
[21-23].

In order to generate uncorrelated scale-free networks, we
assign to each node a given number k of “stubs” (link ends)
and match them pairwise at random, with the constraint of
avoiding self- and multiple connections. Besides the expo-
nent 7, the degree distribution of a finite scale-free network
is defined by the minimum degree k, and the upper cutoff
k.. Hence, the number of sites with degree k is given by
Ny =(klkg,)"" for ky<k<k,,, and N;=0 otherwise, while
the total number of nodes is N=X;N, [23]. This procedure,
which is based on the so-called configuration model (see,

4

B}
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H
[}
w

5ef

FIG. 7. Critical temperature as a function of m (symbols), which
can be approximated by a linear fit (solid line). The inset shows the
dependence with m of the exponent v, where the dashed line is a
guide to the eye.
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FIG. 8. Average degree of occupied nodes for uncorrelated
scale-free networks of size N=103, minimum degree k,=3, and
different values of temperature and degree exponent, as a function
of the fraction of deposited particles, n,../N. The phenomenon of
preferential spin deposition, which reveals that hubs dominate the
early stages of the growth process, is only significant at low tem-
peratures (as observed in the case of BA networks, see Fig. 1) and
for low degree exponents y<<3.

e.g., [38-40]), but includes an additional restriction on the
maximum possible degree of the vertices, was shown to gen-
erate scale-free networks with no two- and three-vertex cor-
relations [41,42].

As discussed above, the process of spin deposition during
the growth of MEM clusters can be studied by computing the
degree of the newly occupied node, k.., every time a new
particle is added to the system (recall Fig. 1). Figure 8 shows

plots of {k,..)/k Vs n,./N for uncorrelated scale-free net-
works of size N~ 10°, minimum degree k,=3, and different
values of v, as indicated. For each value of the degree expo-
nent considered, we calculated the average degree of occu-
pied nodes for two different temperatures that characterize
the typical low- and high-temperature behavior, namely T
=0.4 and T=4. Notice that, due to the procedure followed
here to generate uncorrelated scale-free networks, the size of
the networks is controlled by the degree cutoff k. Indeed,
the actual size of the networks represented in Fig. 8 fluctu-
ates by ~5% around N=10>.

The plots in Fig. 8 confirm that the phenomenon of pref-
erential spin deposition, due to the dominant role played by
hubs during the early stages of the growth process, is only
significant at low temperatures. Moreover, this phenomenon
is observed to be relevant only for low degree exponents y
< 3. Since the preferential spin deposition is a feature asso-
ciated to the formation of large ordered clusters during the
growth process, these results agree well, at a qualitative
level, with the analogous behavior reported for the Ising
model on uncorrelated scale-free networks (see, e.g., [23]),
in which the disorder was observed to grow monotonically
with the exponent 7.

Figure 9 displays the thermal dependence of the order
parameter, (|M ), for uncorrelated scale-free networks of size
N=10% minimum degree k,=3, and different values of the
degree exponent. As discussed above, the degree of disorder
in the system is observed to grow monotonically with 7,

PHYSICAL REVIEW E 75, 026110 (2007)

FIG. 9. Thermal dependence of the order parameter for uncor-
related scale-free networks of size N~ 10°, minimum degree k,
=3, and different values of degree exponent, as indicated.

irrespective of the temperature. Moreover, for any fixed
value of 7, the temperature is shown to drive the system
through an effective order-disorder pseudophase transition.

In order to further investigate the scaling properties of the
observed pseudocritical behavior, we can determine the ef-
fective pseudocritical temperatures for systems of different
size and extrapolate the results to the thermodynamic limit.
Analogously to the procedure followed above (see Figs. 6
and 7), symbols in Fig. 10 represent the effective transition
temperatures for the MEM growing on uncorrelated scale-
free networks of minimum degree k,=3, different size, and
different values of the degree exponent. The critical behavior
turns out to be crucially dependent on the steepness of the
degree distribution. Indeed, while the plots with y=3 look
similar to those obtained previously for the MEM growing
on BA networks, the plots corresponding to smaller values of
the degree exponent are observed to diverge, hence implying
the absence of paramagnetic-ferromagnetic phase transitions
in the thermodynamic limit.

Using the finite-size scaling relation given by Eq. (3), the
plots for y=3 can be well fitted (solid lines in Fig. 10). For

5
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* < &0
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T eff(N)

FIG. 10. Effective transition temperatures for uncorrelated
scale-free networks of minimum degree ky=3, different size, and
different values of degree exponent (symbols). Fits to the data using
the scaling relations given by Egs. (3) and (4) are also shown (solid
lines).
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y=3, we obtain T,=1.14(2) and v=0.9(1), while, for y=4,
the scaling relation yields 7,=0.74(1) and v=2.6(2).

In the same vein, the divergent plots for y<<3 can be well
fitted by a scaling relation analogous to Eq. (3), namely

TY(N)=A+B X N, 4)

as shown by the corresponding solid lines in Fig. 10. The
y=2 plot diverges with exponent z=0.29(3), while, for y
=2.5, one obtains z=0.33(3).

Comparing these observations with the results reported
for the Ising model on uncorrelated scale-free networks
[21-23], we find a qualitative agreement for both y<3 (i.e.,
the absence of a paramagnetic phase in the thermodynamic
limit) and Y>3 (i.e., the existence of a finite critical tem-
perature delimiting the paramagnetic-ferromagnetic phase
transition). Instead, the convergence of the critical tempera-
ture for the y=3 case is clearly in contrast with the logarith-
mic divergence observed in the Ising model. Indeed, this was
also pointed out above when comparing the behavior of both
models defined on BA structures. We can thus stress the fact
that, for both the MEM and the Ising model, the critical
features remain unchanged when passing from the BA net-
work topology to the uncorrelated scale-free network struc-
ture with degree exponent y=3.

IV. CONCLUSIONS

Dynamical and critical properties of the magnetic Eden
model growing on Barabdsi-Albert scale-free networks were
studied by means of extensive Monte Carlo simulations. Ac-
cording to former studies on spin models defined on complex
networks, magnetic concepts such as, e.g., temperature, spin
states, and ferromagnetic couplings, can be meaningfully re-
interpreted in social contexts. Hence, the MEM growing on
scale-free networks is here proposed as a model for the irre-
versible opinion spreading within an inhomogeneous society,
in which different individuals play different social roles.

The deposition and/or spreading dynamics was studied as
a function of the degree of the occupied sites and showed
evidence for the leading role played by hubs in the growth
process. Indeed, it was observed a phenomenon of preferen-
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tial spin deposition, in which highly connected nodes tend to
dominate the growth dynamics at early times. This phenom-
enon is more significant at low temperatures, since the
MEM’s growth rules favor the occupation of highly con-
nected nodes within ordered local neighborhoods.

Adopting the mean absolute magnetization per spin as the
order parameter, we observed the occurrence of effective
pseudocritical order-disorder phase transitions. The thermal
dependence of the order parameter distribution functions
showed the characteristic signatures of true thermally driven
continuous phase transitions, which were indeed confirmed
by means of standard finite-size scaling procedures.

The critical behavior found in this nonequilibrium spin
model contrasts remarkably with the behavior observed in
related equilibrium spin systems such as the Ising model on
BA scale-free networks, which in the thermodynamic limit
only displays a ferromagnetic phase.

Finally, the irreversible growth of MEM clusters was
studied on uncorrelated scale-free networks. Many of the
qualitative features in the growth of finite samples were
found to be common to both BA and uncorrelated scale-free
networks. However, the latter were observed to exhibit a
very strong dependence on the degree exponent 7y, which
manifests itself most significantly in the critical properties of
the system. The critical behavior for y=3 was found analo-
gous to previous results for the MEM growing on BA net-
works, while, for smaller values of the degree exponent, only
the ferromagnetic phase was observed to persist in the ther-
modynamic limit.

The present findings will thus hopefully stimulate and
contribute to the growing interdisciplinary efforts in the
fields of sociophysics, complex networks, and nonequilib-
rium statistical physics.
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